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Abstract
In this paper, the radiation force per length resulting from a plane standing
wave incident on an infinitely long cylindrical shell is computed. The cases
of elastic and viscoelastic shells immersed in ideal (non-viscous) fluids are
considered with particular emphasis on their thickness and the content of their
interior hollow spaces. Numerical calculations of the radiation force function
Yst are performed. The fluid-loading effect on the radiation force function
curves is analysed as well. The results show several features quite different
when the interior hollow space is changed from air to water. Moreover, the
theory developed here is more general since it includes the results on cylinders.

PACS number: 43.25.+y

1. Introduction

The procedure to position and manipulate materials using sound or ultrasound waves is called
acoustic levitation [1, 2]. The free suspension of material samples is often necessary for certain
types of physical property measurements. This technique has been successfully used in space
applications for positioning materials (such as samples of small liquid and solid materials
with diameters ranging from micrometres to millimetres) in the microgravity environment of
a stationary ultrasonic field [3]. Moreover, acoustic levitation has been applied in different
research areas, for example, in fluid dynamics [4, 5], materials science [6] and analytical
chemistry [7].

The physical phenomenon behind the acoustic levitation is, indeed, the acoustic radiation
force resulting from the standing wave field. Rayleigh [8] was the first to investigate the
effect of the acoustic radiation force on objects. Later, King [9] studied the acoustic radiation
force acting on a sphere in a standing-wave field. Furthermore, various aspects of the acoustic
radiation force were investigated [10–19].
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Nonetheless, the acoustic radiation force on cylindrically shaped structures has received
significantly less attention. The first theoretical study dates back to the early work of Awatani
[20] who computed the radiation force caused by progressive and stationary plane acoustic
waves impinging on a rigid cylinder immersed in a compressible fluid. His calculations were
performed within a very limited range of frequency (0 � ka � 5). Later, Hasegawa et al [21]
extended his study and computed the radiation force due to progressive acoustic waves for
different elastic cylinder materials. Wu et al [22] gave a long-wavelength approximation for
the radiation force on a rigid cylinder for the situation where the cylinder’s axis is constrained
to be parallel to the equi-amplitude surfaces of a plane standing wave. Soon after, Hasegawa
et al [23] developed a more general theory to study the acoustic radiation force on elastic,
cylindrical and spherical shells placed in a progressive wave field.

Our purpose in the present study is to extend the work previously developed [24, 25] by
analysing and developing analytical equations for the acoustic radiation force on cylindrical
shells (with hollow) placed in a plane standing wave and immersed in ideal fluids. Although
a theory has been recently developed for spherical shells in standing waves for drug delivery
applications in the medical field [26], it is of particular interest to study the radiation force on
tubular (elastic or viscoelastic) specimens in non-contact and non-destructive procedures for
space-related applications. The theory gives a priori knowledge about the magnitude of the
force used to levitate the specimens and manipulating them non-destructively. By performing
acoustic levitation experiments in a low-gravity environment we can (for a time) reduce or
remove the effects of gravity from the problem, all the while maintaining the advantages of
non-contact manipulation that acoustics provides. In this work, the radiation force per length
on elastic and viscoelastic cylindrical shells is expressed using a dimensionless factor called
the acoustic radiation force function Yst—which is the radiation force per unit energy density
and unit cross-sectional surface—for a standing wave. Numerical calculations are performed
for a few examples including brass elastic and polymer-type viscoelastic cylindrical shells
filled with the same fluid or with a different fluid than their interior hollow spaces. Particular
attention is directed to the thicknesses of the shells as well as the fluid surrounding their exterior.
The fluid-loading effect on the Yst curves is also analysed by considering a high-density fluid
surrounding the shells.

2. Method

The acoustic radiation force is commonly interpreted as the time-averaged force, and calculated
by averaging the radiation–stress tensor expressed in terms of the total scattering velocity
potential or pressure in an ideal fluid. It is, therefore, essential to calculate first the total linear
acoustic scattering field disturbed by the shell for the purpose of obtaining the radiation force.

2.1. Acoustic scattering by a cylindrical shell in a plane standing wave

Consider a solid cylindrical shell of outer radius a and inner radius b. Its axis is taken to
coincide with the z-axis of the coordinate cylindrical system (r, θ, z). The outside and inside
fluid mass density are ρ and ρ ′, respectively, and the shell’s mass density is denoted by ρ∗.
The cylindrical shell’s centre is assumed to be placed at a distance h from the nearest pressure
antinode of a plane stationary wave at normal incidence with respect to the z-axis (figure 1).
The cylindrical shell is assumed to be immersed in an ideal compressible fluid so that the
viscous and thermal effects can be neglected.

The incident velocity potential is expressed by

�st
inc = �0 e−iωt {eik(x+h) + e−ik(x+h)}, (1)
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Figure 1. 2D-frontal view of a circular cylindrical shell placed in a plane standing wave acoustic
field. The shell’s axis is constrained to be parallel to the equi-amplitude surfaces of the plane
acoustic standing wave.

where �0 is the amplitude, k = ω/c is the wave number in the fluid medium and c is the
sound velocity in the exterior fluid medium.

In a system of cylindrical coordinates, equation (1) can be rewritten as

�st
inc =

∞∑
n=0

�nεni
nJn(kr) cos(nθ) e−iωt , (2)

where �n = �0{eikh + (−1)n e−ikh}, εn is the Neumann factor which is defined by ε0 = 1, and
εj = 2, j = 1, . . . , n, and Jn(·) is the Bessel function of the first kind of order n.

The wave velocity in the core material of the shell is expressed by

vint = −∇�int + ∇ × �int, (3)

where �int and �int(0, 0, �int) are the scalar and vector potentials expressed in cylindrical
coordinates by

�int =
∞∑

n=0
�n,lεni

n[AnJn(klr) + BnYn(klr)] cos(nθ) e−iωt ,

�int =
∞∑

n=0
�n,sεni

n[CnJn(ksr) + DnYn(ksr)] sin(nθ) e−iωt ,

(4)

where

�n,l = �0{eiklh + (−1)n e−iklh}, �n,s = �0{eiksh + (−1)n e−iksh} and kl = ω/cl

is the compressional wave number, cl is the compressional wave velocity, ks = ω/cs is the
shear wave number, cs is the shear wave velocity, Yn(·) is the cylindrical Bessel function of
the second kind and An, Bn, Cn and Dn are unknown coefficients.

The wave velocity in the ideal fluid filled in the hollow region of the shell is expressed in
cylindrical coordinates as

�f = e−iωt

∞∑
n=0

�n,f εni
nEnJn(kfr) cos(nθ), (5)

where �n,f = �0{eikfh + (−1)n e−ikfh}, kf = ω/cf , cf is the compressional wave velocity in
the interior fluid and En is an arbitrary coefficient.
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The scattered velocity potential is expressed as

�st
sc =

∞∑
n=0

�nεni
nSnH

(1)
n (kr) cos(nθ) e−iωt , (6)

where H(1)
n (·) is the Hankel function of the first kind of order n and Sn is the unknown

coefficient to be determined from the following boundary conditions at r = a and r = b (a and
b being the outer and inner radius of the cylindrical shell, respectively):

(1) the pressure in the fluid equals the normal component of stress in the solid at the interface,
(2) the normal (radial) component of displacement (or velocity, respectively) of the fluid must

be equal to the normal component of displacement (or velocity, respectively) of the solid
at the interface,

(3) the tangential components of shearing stress must vanish at the surface of the solid.

The general solution for Sn is given by

Sn =
[ −FnJn(x) + xJ ′

n(x)

FnH
(1)
n (x) − xH

(1)′
n (x)

]
, (7)

where x = ka and the coefficients Fn are explicitly given in [27].
The term Sn is a complex number that can be written as

Sn = (αn + iβn). (8)

Thus, the total (incident + scattered) velocity potential is expressed by

�st
t =

∞∑
n=0

�nεni
n(Un + iVn) cos(nθ) e−iωt , (9)

where Un and Vn are given by the following equations:

Un = (1 + αn)Jn(kr) − βnYn(kr), Vn = βnJn(kr) + αnYn(kr). (10)

2.2. Acoustic radiation force on a cylindrical shell placed in a plane standing wave

The total averaged force caused by acoustic waves on a boundary moving at a small velocity
of the first order in an ideal fluid is given by [11]

〈F〉 = −
∫ ∫

s

[(
1

2

ρ

c2

〈(
∂�st

∂t

)2
〉

− 1

2
ρ〈|∇�st|2〉

)
n + ρ〈(vnn + vt t)vn〉

]
dS, (11)

where S is the boundary at its equilibrium position and 〈·〉 stands for time average,

�st = Re
[
�st

t

] =
∞∑

n=0

εnRn cos(nθ), (12)

in which the functions Rn = Re[(i)n(Un(kr) + iVn(kr))�n e−iωt ] and −∇�st is the first-order
particle velocity of the boundary and �st

t is the total velocity potential in the fluid medium
described in equation (9) and vnn and vt t are the normal and tangential components of the
particle velocity of the boundary, respectively.
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Figure 2. The radiation force function curves for brass elastic cylindrical shells placed in a standing
wave and immersed in water. Their interior hollow regions are filled with air (solid line) or water
(dotted line) for four thickness (b/a) values. One notices the great change between the air-filled
and water-filled solutions.

In the direction of wave propagation (x-direction), the radiation force per unit length of
the shell is expressed as [25]

〈Fx〉st = Yst Sc〈Ep〉 sin(2kh), (13)

where Sc = 2a is the cross-sectional area for a unit-length cylindrical shell and 〈Ep〉 =
(1/2)ρk2|�0|2 is the mean energy density of the incident progressive plane wave (where its
velocity potential is given by �

p
inc = �0 e−i(ωt−kx)). Yst is the radiation force function that

depends on the scattering and absorption properties of the target and the radiation force per
unit cross section and unit energy density. The dimensionless factor Yst is defined as the
radiation force function for standing or stationary waves, and expressed by [25]

Yst = 4

x

∞∑
n=0

(−1)n+1[βn(1 + 2αn+1) − βn+1(1 + 2αn)] (14)

where x = ka.

3. Numerical results and discussion

Equation (14) is used to compute the acoustic radiation force function Yst for various materials.
The results are shown in figures 2–8 with particular emphasis on the shells’ thicknesses and
the content of their interior hollow space regions.

The radiation force function Yst curves are plotted as a function of the size parameter
x = ka (a being the outer radius of the cylindrical shell) within the range of frequency defined
by 0 � x � 20 in intervals of 0.001. It is very important to choose a sufficiently small sampling
step since resonance peaks are very sharp and a wrong sampling may lead to false curves. It
is also verified that the Yst curves do not vary significantly when the step value is decreased.
The mechanical parameters of various materials used in the calculations are listed in table 1.
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Figure 3. The radiation force function curves for lucite cylindrical shells placed in a standing
wave and immersed in water. Their interior hollow regions are filled with air for four thickness
(b/a) values with and without absorption.

Table 1. Material parameters used in the numerical calculations.

Mass density Compressional Shear velocity Normalized longitudinal Normalized shear
Material (103 kg m–3) velocity (m s–1) (m s–1) absorption γ1 absorption γ2

Air 0.001 23 340 – – –
Brass 8.1 3830 2050 – –
Lucite 1.191 2690 1340 0.0035 0.0053
Mercury 13.6 1407 – – –
Polyethylene 0.957 2430 950 0.0073 0.022
Water 1.00 1500 – – –

Figure 2 shows a comparison between the Yst curves for brass elastic shells immersed in
water and filled with air or water for four thickness values. The case where b/a = 0 corresponds
to the radiation force function for a cylinder. One notices the great change between the air-
filled and water-filled solutions, especially for thin shells (b/a = 0.99). Nevertheless, the
change is less prominent for thick shells. In addition, the brass material is heavier than the
propagation medium, so the cylindrical shells are attracted to a pressure node (Yst > 0) in
the low ka range; however, for thin shells filled with air (b/a = 0.99), Yst < 0 and hence,
the shells are attracted to a pressure antinode.

Figures 3 and 4 show the radiation force function curves for non-absorbent and absorbent
lucite shells filled with air or water, respectively. Longitudinal and shear waves absorption in
lucite (and polyethylene; next paragraph) is linearly dependent on frequency and is modelled
by introducing complex wave numbers. It is important to notice the high resonance peak
observed at low ka values for the case of thin shells filled with air (figure 3). In contrast, for
the case of thin shells filled with water (figure 4), the high resonance peak does disappear. This
behaviour is expected since the acoustic radiation force is proportional to the gradient of the
energy density. Here, when air fills the shell’s interior hollow space, it creates a high acoustic
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Figure 4. The same as in figure 3 except that the interior hollow regions are filled with water.

Figure 5. The comparison of the Yst curves for non-absorbent and absorbent polyethylene
cylindrical shells immersed in water and filled with air.

impedance gradient that increases when the shell’s thickness decreases. Therefore, sound (or
ultrasound) reflection is high. Consequently, the net radiation force per cross section acting
on the cylindrical shell is greater than for the case where the interior hollow region is filled
with water that facilitates sound (or ultrasound) transmission through the scattering area.

Figures 5 and 6 show the acoustic radiation force function for absorbent and non-absorbent
polyethylene cylindrical shells filled with air or water, respectively. Notice that the damping
of all peaks appears more clearly for this material whose normalized absorption coefficients
are greater than lucite (table 1).
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Figure 6. The same as in figure 5 but the shells’ interior hollow regions are filled with water.
Obviously, the damping of the resonance peaks appears more clearly for this material whose
normalized absorption coefficients are greater than lucite.

Figure 7. The Yst curves for polyethylene cylindrical shells immersed in mercury and filled with
air with and without absorption. The fluid-loading has a significant impact on the Yst curves; a
‘giant resonance’ peak appears clearly at low ka values. Furthermore, the acoustic radiation force
is not greatly affected by sound absorption inside the viscoelastic material when immersed in a
high density fluid.

Figures 7 and 8 show additional calculations of the acoustic radiation force function Yst

for absorbent and non-absorbent cylindrical shells immersed in mercury and filled with air
or water, respectively. Obviously, the fluid-loading effect on the radiation force function
curves is very significant. The fluid-loading produces interactions between various resonance
vibrational modes that can have a significant impact on the radiation force. This is clearly
observed especially in figure 7 where a ‘giant resonance peak’ appears at low ka. A similar
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Figure 8. The same as in figure 7 but the shells’ interior hollow regions are filled with water.

behaviour was observed in acoustic backscattering from viscoelastic cylinders immersed in a
high density fluid [28]. In an original paper, Hay and Schaafsma [29] discussed the nature
of these ‘giant resonance peaks’ in the attenuation of sound in suspensions of viscoelastic
spheres (placed in a plane progressive wave) at low frequency. These resonances are properly
identified as associated with subsonic Rayleigh waves [30]. Our analysis is the first to extend
the results of the work done by Hay and Schaafsma on acoustic scattering for the case of the
acoustic radiation force experienced by viscoelastic cylindrical shells placed in a standing
wave field.

Furthermore, it is clearly shown from both figures 7 and 8 that the cylindrical shell, lighter
than the propagation medium (mercury), is attracted to a pressure antinode (Yst < 0) in the low
frequency region. Moreover, for high density fluids, the radiation force is not greatly affected
by sound absorption inside the viscoelastic shells’ materials.

4. Conclusion

In this work, an exact expression of the acoustic radiation force experienced by elastic and
viscoelastic cylindrical shells immersed in ideal fluids and placed in a standing wave was
developed. Analytical equations were derived for the time-averaged radiation force assuming
the media outside and inside the shells are ideal compressible fluids. Numerical calculations
of the radiation force function Yst were performed for different materials. Particular emphasis
was laid upon the absorption of sound by the viscoelastic material, and the loading effect of
the surrounding fluid. The results indicated the ways in which the radiation force function
curves were affected by variations in the shells’ mechanical properties. Cylindrical shells
were predicted to be attracted to pressure nodes when Yst > 0 and to pressure antinodes when
Yst < 0, and the radiation force vanished for kh = ±(nπ/2). If the cylindrical shell was
centred on a pressure antinode, n = 0, and if it was centred on a pressure node n = 1, 2, . . . .

The magnitude of the radiation force was maximal when the shell was at the intermediate
location defined by kh = ±(2n + 1) π

4 , n = 0, 1, . . . These results have shown that the
theory developed is more general since it has included the results on cylinders [25].
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